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Mangrove forests are one of the world’s most threatened tropical
ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral
reef fish often inhabit mangroves2–5, but the importance of these
nurseries to reef fish population dynamics has not been quanti-
fied. Indeed, mangroves might be expected to have negligible
influence on reef fish communities: juvenile fish can inhabit
alternative habitats and fish populations may be regulated by
other limiting factors such as larval supply or fishing6. Here we
show that mangroves are unexpectedly important, serving as an
intermediate nursery habitat that may increase the survivorship
of young fish. Mangroves in the Caribbean strongly influence the
community structure of fish on neighbouring coral reefs. In
addition, the biomass of several commercially important species
is more than doubled when adult habitat is connected to man-
groves. The largest herbivorous fish in the Atlantic, Scarus
guacamaia, has a functional dependency on mangroves and has
suffered local extinction after mangrove removal. Current rates
of mangrove deforestation are likely to have severe deleterious
consequences for the ecosystem function, fisheries productivity
and resilience of reefs. Conservation efforts should protect
connected corridors of mangroves, seagrass beds and coral reefs.

The Mesoamerican reef system of Belize and Mexico provides a
unique experimental setting that has allowed us to isolate the
importance of mangroves to coral reef fish. Three atolls have
virtually no, or extremely limited, mangrove cover. As migrations
from the nearest mangrove resource, across 10–25 km of open ocean
with depths exceeding 2,000 m, are likely to be insignificant for
demersal reef species7, we can assume that adult fish must have used
nursery habitats, such as seagrass, on the atolls. These reef systems
provide three ‘scarce mangrove’ treatments, in which the mean
mangrove perimeter is only 3.9 km within an area the size of Glovers
Reef (228 km2).

Uniquely in the region, Belize also possesses a mangrove-
dominated atoll and extensive offshore mangrove islands at the
edge of a barrier reef. The offshore barrier reef is separated from the
mainland by a channel that is roughly 15-km wide, and sediment
cores show that there is little (,1%) connectivity with the main-
land8. The existence of these offshore, ‘rich mangrove’ atoll and
barrier reef areas allowed us to contrast the fish communities of
three mangrove-scarce reef systems with those of three mangrove-
rich systems (one atoll and two areas of the barrier reef). The
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mangrove perimeters in the mangrove-rich treatments were, on
average, almost fifty times greater (185 km). Notably, with the
exception of mangrove, for which habitat availability differed
significantly between the mangrove-rich and mangrove-scarce
treatments (Mann–Whitney test, P , 0.05), the area of reef and
lagoon habitats was highly consistent among all six systems (see
Fig. 1a and Supplementary Information for details of the habitat
characteristics at the study sites). There was no latitudinal bias in the
locations of treatments (Fig. 1a), and all shared a common biogeo-
graphic province9. More than 100,000 fish from 164 species were
surveyed visually.

The structure of reef fish communities in outer Montastraea reefs
differed markedly between mangrove-rich and mangrove-scarce
sites (Fig. 1b). The magnitude of such differences was tested by
nested ANOSIM10, where the output statistic (R) equals unity when
a factor, such as mangrove extent, divides the data into tight, non-
overlapping groups. Given the possibility that mangroves are a
redundant nursery habitat and only one of a range of potential
limiting factors, we were surprised to find that mangrove extent was
a dominant factor structuring reef fish communities. Mangrove

extent not only explained a significant component of community
structure, but it usually exceeded the influence of reef systems
(Rmangrove ¼ 0.74, P , 0.05; R reef ¼ 0.49, P , 0.001). These results
were highly robust to the units used and the aspect of fish commu-
nity structure under analysis (see Supplementary Information). The
factor mangrove extent even partly explained patterns of commu-
nity structure in reef fishes that can be considered as obligate
reef species not occupying lagoonal nurseries (Rmangrove ¼ 0.59,
P , 0.05; R reef ¼ 0.66, P , 0.001). This suggests that interactions
within the fish community are strong enough that mangrove
deforestation will also affect populations of obligate reef species.

Studies elsewhere in the Caribbean suggest that four reef fish
species are heavily dependent on lagoonal nurseries, although,
unlike in our study, the importance of mangroves was not isolated11.
These species were the striped parrotfish (Scarus iserti), bluestriped
grunt (Haemulon sciurus) and the commercially important yellow-
tail (Ocyurus chrysurus) and schoolmaster (Lutjanus apodus) snap-

Figure 1 Spatial patterns of sampling and community structure in reef fish. a, Study

design showing nested scales of sampling, latitudinal sequence and the distance in

kilometres of reef systems from the mainland. Boxes denote mangrove-rich (shaded) and

mangrove-scarce (open) systems. Habitats included mangrove prop roots (Rhizophora

mangle), seagrass beds, patch reefs, shallow forereefs (depth, 2–5 m) and Montastraea

reefs (depth, 9–12 m). Montastraea reefs were chosen because they have the greatest

fish density and diversity of all outer reef habitats. b, Multidimensional scaling ordination10

of community structure (measured by the Bray–Curtis dissimilarity coefficient) at each

site. Species were included that occupied lagoon habitats during at least one life stage

(juvenile, pre-adult and adult) but excluded carangids, large serranids and large lutjanids.

Density data were log-transformed. Squares represent mangrove-rich and circles

mangrove-scarce sites. The reef systems are as follows: B, Banco Chinchorro; TU,

Turneffe Islands; L, Lighthouse Reef; T, Tobacco Cay; G, Glovers Reef (GW and GE

denoting western and eastern sides, respectively); C, Curlew Bank.

  

Figure 2 Ontogenetic patterns of habitat use in H. sciurus. Shifts in median length among

seagrass, mangrove, patch reef and forereef are all significant within each system

(Kruskal–Wallis test with Mann–Whitney comparisons among medians, P , 0.0002).

Intersystem comparisons show that median lengths and densities between seagrass

systems do not differ significantly (Mann–Whitney, P . 0.05), whereas lengths on patch

reefs are significantly greater in mangrove-rich systems (P , 0.05). Data are pooled from

all systems. Sizes in grey indicate that species identification was tentative at this size

(but these difficulties do not affect our conclusions). Inset shows median and interquartile

size range of H. sciurus, and shows that the gap in median fish length between seagrass

and patch reefs is greater in systems with rich mangrove (RM) than scarce mangrove

(SM).

letters to nature

NATURE | VOL 427 | 5 FEBRUARY 2004 | www.nature.com/nature534 ©  2004 Nature  Publishing Group



pers. We therefore examined the biomass of these species, but we
included two additional species that were often seen in the man-
groves as juveniles: the French grunt (Haemulon flavolineatum) and
white grunt (Haemulon plumieri). Although none of the species was
absent from reefs in mangrove-scarce systems, their biomass was
significantly enhanced in at least one reef habitat in mangrove-rich
systems (Table 1). The magnitude and pattern of biomass enrich-
ment differed among species (Table 1). H. sciurus benefited most
strongly from mangroves: biomass on patch reefs in mangrove-rich
systems was over 25 times higher than that in mangrove-scarce
systems. The biomass of O. chrysurus doubled when its preferred
Montastraea habitat was adjacent to rich mangroves (Table 1). A
similar analysis for S. iserti showed a 42% biomass increase on the
Montastraea forereef. L. apodus and H. flavolineatum biomasses
were significantly enriched in patch reef and shallow forereefs but
not in the outer Montastraea reef.

Mangroves may enhance adult fish biomass in two ways. First,
efflux of detritus and nutrients may enrich primary production in
neighbouring ecosystems; however, this hypothesis is not well
supported12. Second, mangrove nurseries may provide a refuge
from predators and/or plentiful food that increases the survivorship
of juveniles13. Our data, although not constituting proof, support
the latter hypothesis. For example, the size–frequency distribution
of H. sciurus suggests an ontogenetic shift in habitat use from
seagrass, to mangroves, to patch reefs, and finally to forereefs, their
main adult habitat (Fig. 2). Our data suggest that juvenile grunts
migrate from seagrass beds when they reach a length of 4–6 cm.

Migration occurs from seagrass to mangroves, but if mangroves are
absent the grunts move to reefs (Fig. 2). Because mangroves offer
refuge13 and the biomass of haemulid predators is greater on reefs
than in mangroves (30 t km22 versus 18 t km22; t-test, P , 0.05),
the chances of grunt survival may be lower if grunts migrate directly
to reefs. In short, some fish species move to their adult habitat in
stages. As the biomass of predators increases at each stage, it is
desirable to grow as large as possible before taking the next step
towards adult habitat. We suggest that mangroves provide an
intermediate nursery stage between seagrass beds and patch reefs,
and they therefore alleviate a predatory bottleneck in early demersal
ontogeny. For further details see Supplementary Information.

Large-scale ecological studies of pattern should infer causation
only if alternative causative mechanisms have been tested and
falsified14. Thus, we can only infer that mangroves enrich reef fish
communities once plausible alternative explanations, such as vari-
ations in fishing intensity, have been discounted. There seemed to be
four plausible alternative scenarios, each of which was tested and
discounted (Table 2). Indeed, the pattern of direct fishing pressure
tended to strengthen our conclusions: lutjanid biomasses were
greater in mangrove-rich areas despite higher fishing pressure
(Table 2). Therefore, either fishing of lutjanids is not particularly
intense or we have underestimated the potential biomass enrich-
ment of lutjanids by mangroves.

None of the 44 fish species that we encountered in mangroves was
confined to that habitat and 37 (84%) were seen on Montastraea
reefs as reproductively capable adults. However, juveniles of one reef

Table 1 Impact of extensive mangroves on the biomass of fish in patch reef, shallow forereef and Montastraea reef habitats

Mean (s.e.m.) biomass (kg km22)

Patch reef Shallow forereef Montastraea reef

Species Scarce
mangroves

Rich
mangroves

Sig.
factors*§

Biomass
increase

Scarce
mangroves

Rich
mangroves

Sig.
factors*

Biomass
increase

Scarce
mangroves

Rich
mangroves

Sig.
factors*

Biomass
increase

...................................................................................................................................................................................................................................................................................................................................................................

S. isertik – – – – – – 1,530 (118) 2,170 (111) M‡ 42%
H. sciurus 1,205 (329) 33,349 (9,274) M 2667% 56 (38) 425 (120) M 659% 288 (53) 447 (55) M, R 55%
H. flavolineatum 5,256 (1,460) 15,307 (4,114) M, R 191% 516 (101) 1,600 (249) M 210% 1,398 (149) 1,643 (139) NS
H. plumieri 5,174 (1,614) 16,280 (3,591) M 214% 317 (72) 843 (304) M 165% 523 (62) 863 (69) M 65%
Haemulidae{ 11,636 (2,089) 67,370 (12,971) M, R 478% 889 (152) 3,031 (497) M 240% 2,288 (188) 3,210 (192) M, R, S‡ 40%
O. chrysurus 769 (441) 410 (95) R† 659 (150) 892 (187) NS 3,098 (486) 6,715 (1,323) M, S‡ 116%
L. apodus 739 (354) 6,192 (1,566) M 737% 622 (336) 2,392 (722) M 284% 1,767 (226) 1,898 (259) S‡
Lutjanidae{ 2,890 (1,228) 16,707 (4,805) M 478% 1,882 (745) 4,428 (1,055) M 135% 5,883 (796) 12,223 (1,503) M, S‡ 107%
...................................................................................................................................................................................................................................................................................................................................................................

The importance of mangroves and reef system in explaining patterns of biomass was tested by nested general linear model ANOVA. Data were transformed by the Box–Cox method. NS, not significant.
*Significant factors (P , 0.05) are mangrove (M), reef system (R) and site (S). Where mangroves exerted significant influence, the increase in mean biomass is expressed as a percentage of the level
in mangrove-scarce systems. Neither the biomass nor the density of any species in seagrass beds differed significantly between mangrove-rich and mangrove-scarce systems.
†The fit by the Box–Cox method was poor (P . 0.02), and the significance of mangroves could not be tested.
‡Site was only entered into these tests because site-level data (individual transects) often had to be pooled to increase sample size.
§Patch reef area was entered as a covariate for patch reefs but the slopes did not differ from zero.
kS. iserti was not surveyed on patch reefs or shallow forereefs.
{All species in the family were assessed, not just those shown in the table.

Table 2 Alternative explanations of increased biomass observed in some haemulids, scarids and lutjanids in Montastraea reefs adjacent to rich mangroves

Potential alternative explanation of results Test Result Decision
...................................................................................................................................................................................................................................................................................................................................................................

Direct fishing pressure: greater fishing pressure
on haemulids and lutjanids in Mscarce systems

Compare density of artisanal and commercial
fishers between Mrich and Mscarce systems*

Greater in all Mrich systems (J. Azueta, personal
communication)

Reject

Indirect fishing pressure: fishing led to fewer predators
of haemulids and lutjanids in Mrich systems

ANOVA of piscivore biomass between Mrich

and Mscarce systems
No difference (10.5 ^ 2.9 tonnes km22 versus

10.1 ^ 1.6 t km22; mean ^ s.e.m.)
Reject

Subtleties in habitat type: structure of reef habitat
differs between Mrich and Mscarce systems

Nested ANOSIM of habitat composition and
rugosity variables Mrich versus Mscarce

No difference (P . 0.05) Reject

Internal validity of design: combination of barrier reef
and atoll systems for Mrich treatment caused bias

Compare barrier and atoll systems for community
structure and focal species biomass (evidence
of bias), benthic structure (d habitat), density of
early haemulids in seagrass (d recruitment)

Data do not group into barrier and atoll categories.
All nested ANOVAs and ANOSIMs not significant
(P . 0.05). Mean haemulid densities 78 ha21

and 79 ha21 in atoll and barrier seagrass

Reject

...................................................................................................................................................................................................................................................................................................................................................................

Most of these analyses focus on the Montastraea habitat, which, being most distant from mangroves, is perhaps most likely to be confounded by other factors. M represents the factor Mangrove
entered into the analysis. d denotes ‘difference’.
*Fisheries statistics are currently being collated by J. Azueta (Fisheries Department, Belize), but the differences between Mrich and Mscarce reef systems are unequivocal and relate to the distribution of
inhabited islands, fishing camps and proximity to fish markets.
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species, the rainbow parrotfish S. guacamaia, were found exclusively
in mangroves. S. guacamaia is the largest herbivorous marine fish in
the Atlantic15 (reaching 1.2 m in length) and is listed as vulnerable
on the IUCN Red List of Threatened Species16. Rates of encounter of
S. guacamaia juveniles were very significantly greater in mangroves
than in any other habitat (P , 0.0001), and we conclude that they
are dependent on mangroves. This is consistent with limited reports
indicating that S. guacamaia juveniles are usually seen in man-
groves15,17. If juveniles are mangrove dependent, we would expect
adult S. guacamaia to be scarce or absent on reefs with little access
to mangroves. This was found to be true: adult densities of
S. guacamaia were strongly and significantly (P , 0.0001) enhanced
on reefs near mangroves (see Supplementary Information).

Such functional dependency means that S. guacamaia is vulner-
able to local extinction from habitat loss as well as from overfishing.
Indeed, anecdotal information from Glovers Reef (D. Wesby,
personal communication) suggests that S. guacamaia has under-
gone local extinction in the past 30 yr. Schools of this parrotfish were
commonly observed in the 1960s when several of the islands had
well-developed mangrove habitats. Unlike other study sites, all
functional mangrove was cleared in the late 1960s and early
1970s, and in the mid- to late 1970s S. guacamaia was heavily
fished. S. guacamaia is no longer fished and either has recovered or
has survived at low densities at mangrove-rich sites. Its extinction at
Glovers Reef seems most probably due to the removal of its nursery
habitat.

The impact of historical overfishing on modern reef ecosystems
has been discussed at length18. Reductions in herbivory may reduce
the resilience19 of coral reefs to algal overgrowth. In the case of
S. guacamaia, historical overfishing and mangrove deforestation
may have worked synergistically to reduce herbivory and secondary
production on many Caribbean coral reefs. We estimate that loss of
a single adult S. guacamaia would constitute a 10% reduction in
total parrotfish biomass within its territory (see Supplementary
Information).

Extensive mangrove habitats can enhance the biomass of fishes
on Caribbean reefs because tropical coastal ecosystems are func-
tionally linked. Although precise corridors of connectivity between
habitats are not fully understood as yet, the results have an
important implication for conservation planning: management
schemes should explicitly protect swaths of connected habitats
rather than simply identify representative areas of each habitat in
isolation20. Given the ever-increasing range and severity of natural
and anthropogenic disturbances to coral reefs21, any natural source
of ecosystem production and resilience should be conserved. Our
data suggest that the current rate of mangrove deforestation,
which is greatest in the Americas at 2,251 km2 yr21 and exceeds
that of tropical rainforests1, will have significant deleterious con-
sequences for the functioning, fisheries, biodiversity and resilience
of Caribbean coral reefs. A

Methods
Fish and benthic surveys
Montastraea reefs were surveyed at a depth of 9–12 m, just inside the reef escarpment. All
but nocturnal (such as Apogonidae) and highly cryptic (such as Clinidae and Gobiidae)
fish species were surveyed by using discrete group visual fish census22. Those species were
also ignored in other comparable studies23. Species were divided into four groups, and
their density and size (to the nearest centimetre) were estimated along belt transects by the
same person at each site. Surveys were carried out at 09:00, 12:00 and 15:00 without
systematic bias per site.

Transect size and number were optimized by using species-area curves from pilot
surveys at Glovers Reef, which had relatively low fish density. The transect dimensions and
numbers (given in parentheses) at each site were 30 £ 2 m (6) for smaller benthic species;
30 £ 4 m (10) for scarids, acanthurids, pomacanthids, diodontids and monacanthids;
100 £ 4 m (6) for haemulids, chaetodontids, small serranids and labrids; and 100 £ 6 m
(6) for lutjanids, carangids, planktivorous labrids, large serranids and other large
predators. Lutjanids and haemulids were surveyed on the shallow forereef by using
150 £ 4 m (6) transects and on patch reefs by using 10 £ 4 m (4) transects. We surveyed
seagrass beds by using 50 £ 2 m (12) transects and mangrove fringes by using 20 £ 2 m
(10) transects, of which less than a metre extended outside prop roots.

Fish lengths were converted to biomass by using allometric relationships24. The
percentage cover of coral, macroalgae, turf algae, coralline red algae and sand was
measured in fifteen 0.25-m2 quadrats per site. As an index of structural complexity, we
measured the horizontal distance covered by a 2-m chain (0.3-cm links) draped tightly
across the seabed (n ¼ 10 per site). All surveys were completed during May and June 2002.

Calculation of predator biomass and statistical analysis
Previous studies have found that the main predators of haemulids and smaller lutjanids
are Sphyraena barracuda, large lutjanids (such as L. jocu) and serranids (such as
Mycteroperca bonaci) and carangids (such as Caranx hippos). We pooled biomass data for
these groups to obtain a proxy for predation, which we tested by nested general linear
model analysis of variance (ANOVA; site nested within reef, reef nested within mangrove
extent).

Observations of uncommon species such as S. guacamaia cannot be analysed by
conventional statistical methods, so we used bayesian methods based on the number of
observations rather than fish densities (see Supplementary Information). Data were
pooled from all six reef systems surveyed.
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