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Why fishing magnifies fluctuations in fish
abundance
Christian N. K. Anderson1, Chih-hao Hsieh1,2,3,4, Stuart A. Sandin1, Roger Hewitt5, Anne Hollowed6,
John Beddington7, Robert M. May8 & George Sugihara1

It is now clear that fished populations can fluctuate more than unharvested stocks. However, it is not clear why. Here we
distinguish among three major competing mechanisms for this phenomenon, by using the 50-year California Cooperative
Oceanic Fisheries Investigations (CalCOFI) larval fish record. First, variable fishing pressure directly increases variability in
exploited populations. Second, commercial fishing can decrease the average body size and age of a stock, causing the
truncated population to track environmental fluctuations directly. Third, age-truncated or juvenescent populations have
increasingly unstable population dynamics because of changing demographic parameters such as intrinsic growth rates. We
find no evidence for the first hypothesis, limited evidence for the second and strong evidence for the third. Therefore, in
California Current fisheries, increased temporal variability in the population does not arise from variable exploitation, nor does
it reflect direct environmental tracking. More fundamentally, it arises from increased instability in dynamics. This finding has
implications for resource management as an empirical example of how selective harvesting can alter the basic dynamics of
exploited populations, and lead to unstable booms and busts that can precede systematic declines in stock levels.

Ecologists have long suspected that harvesting a species has the unin-
tended consequence of destabilizing the abundance of that species1,2.
This would be undesirable, because boom-and-bust cycles can
increase the likelihood of local extinctions3 and can harm the eco-
nomic market for the species. However, this connection has been
remarkably difficult to prove. A historic example is the collapse of
the California sardine fishery in the late 1940s, which some argued
was caused primarily by fishing4,5, but which others attributed to
cooling sea surface temperatures or to shifting wind patterns6–8.
Because landings records contain no information about unexploited
species, there is no control group to disentangle environmental
effects from fishing effects. Partly to address this conundrum,
CalCOFI was initiated to collect data both on fished and unfished
species living in the same environment. CalCOFI overcame the reli-
ance on landings data by sampling the ichthyoplankton assemblage, a
well-known proxy for current adult (spawning) biomass9–11. Fifty
years into the study, Hsieh et al.9 used the CalCOFI ichthyoplankton
database12 to separate the effects of fishing from other variables, and
demonstrated that fishing significantly increases temporal variability
of populations in the southern sector of the California Current eco-
system (Fig. 1). Increased variability is thought to be related to the
truncated age/size structure3,4,9,13–17 of commercially fished species, a
phenomenon caused by selective removals of larger, older individuals
that previously provided stability to the population.

Here we examine three competing hypotheses for the link between
fishing and stock variability1,2,9,16,18. First, fishing itself can vary year
to year and this can translate directly into increased population
variability19. Second, fished populations that become dominated by
relatively small-bodied and young individuals are less able to smooth
out environmental fluctuations, and are thus more likely than
unfished stocks to track directly those fluctuations4,9,13. Finally,

fished populations that become dominated by small-bodied and
young individuals are more prone to exhibit unstable dynamics
due to changing demographic parameters20,21. These are not mutually
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Figure 1 | In addition to an increased coefficient of variation9, exploited
species (red dots) exhibit larger booms and busts than unexploited species
(blue triangles) of a similar age. The 95th and the 5th percentiles of
abundance are shown for each species, with exponential fits (dashed lines)
for the exploited and unexploited species. Note that for all species, the busts
(lower range) are more pronounced than the booms (P , 0.0001).
Populations less than one-tenth mean size probably fell below detection
levels and were conservatively fixed at one-tenth mean size; thus, the effect
may be more pronounced than depicted here.
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exclusive hypotheses; all three could act together to increase variabi-
lity. Here we analyse the relative importance of each hypothesis as a
cause of the increase in population variability of fished stocks
observed in the southern California Current ecosystem.

Hypothesis 1 (variable fishing)

According to hypothesis 1, a fish stock is expected to vary more if
exploited heavily some years and lightly in others. Jonzén et al.22

discovered a positive correlation between the variance in fishing
mortality and the variance in the standing stock biomass of Baltic
cod populations. We use their method on the CalCOFI database, to
test this hypothesis for the seven exploited species whose fishing
mortality is available from National Marine Fisheries Service stock
assessment reports (Supplementary Table 1) and find no evidence
that variability in fishing mortality is associated with variability
in either larval density (Fig. 2) or estimated spawning biomass
(Supplementary Fig. 2). Therefore, although it is reasonable to expect
the variability of these populations to be somewhat influenced by
year-to-year differences in fishing effort, hypothesis 1 alone does
not explain the observed increase in variability of these data.

Hypotheses 2 and 3 (age-truncation effects)

The other two hypotheses are closely related. Because fishing typically
targets the larger individuals of a species, the average size—and thus
age—of target populations is often found to decrease14–16,18,23. Age
truncation leading to increased population variability has been docu-
mented in several populations9, and is here referred to as the ‘age
truncation effect’ (ATE)13. Such juvenescence can affect population
variance in two separable ways.

Hypothesis 2 suggests that when new recruits compose most of the
stock, the juvenescent population is more likely to track variable
environmental processes directly4,5. Although younger and smaller
fish are more susceptible to changes in the environment, older and
larger fish tend to integrate over environmental fluctuations and
survive hard times better through ‘bet-hedging’ strategies18,24–27

including fat storage, the ability to migrate and avoid poor areas,
having flexibility in spawning times and locations, and production
of high-quality offspring that survive in a broader suite of environ-
mental conditions18. Bet-hedging strategies are well documented in

association with long-tailed age distributions18,24–27. Loss of hedging
capacity through age truncation should produce a time-series signal
that more closely exhibits the linear (statistically noisy) characteris-
tics found in physical oceanographic data for that region21.

By contrast, under hypothesis 3, the increased variability of
exploited fish stocks comes from changes in demographic parameters
that amplify nonlinear behaviour20,21. There are many ways that the
ATE can change demographic parameters, for example by increasing
intrinsic population growth rates or by increasing nonlinear coupling
of demographic parameters to environmental noise20,28. The result-
ing population dynamics will produce a more variable time series
with more nonlinear behaviour than seen in unexploited fish stocks.

Separating environment and demography

Because hypothesis 2 implies increased tracking of linear environ-
mental variation, whereas hypothesis 3 describes an enhanced non-
linear response, we can distinguish these subtle alternatives by
comparing the nonlinearity in the time series of exploited species
relative to unexploited species. Here, nonlinearity is quantified using
S-maps29, a model validation criterion that uses out-of-sample pre-
dictions from equivalent linear versus nonlinear models to identify
the dynamics behind time-series observations. The model either
weights all data equally (h 5 0) to make linear forecasts, or gives more
weight to data points with similar recent histories (h . 0), a hallmark
of nonlinear behaviour29,30. The nonlinearity of a time series is deter-
mined by how much the correlation (r) between forecasts and
observations increases as models are tuned towards nonlinear solu-
tions; that is, how much forecast skill increases (Dr) when h . 0
(Dr 5 rh . 0 – rh 5 0; see Methods).

When CalCOFI ichthyoplankton time series are modelled using
linear autoregression (S-maps with h 5 0), fished species are slightly
more predictable than unfished species (r 5 0.514 and 0.504, respec-
tively; Fisher’s test P 5 0.64; Supplementary Fig. 3). However, this
possible evidence for hypothesis 2 is marginal (Supplementary Table
2). Indeed, nonlinear models describe the CalCOFI ichthyoplank-
ton time series better (h 5 0.3 for both), and more importantly,
fished species exhibit significantly more nonlinearity than the
unfished group (Fig. 3a; unfished Dr 5 0.037, P 5 0.25; fished
Dr 5 0.083, P , 0.01; Fisher’s test, P , 0.003). If the increase in
variance is due to vulnerable, young fish simply tracking the linear
environment more closely, then the nonlinearity (Dr) of fished
species should decrease. This prediction is contradicted by the data.
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Figure 2 | Hypothesis 1: does variable fishing cause variability in fish
stocks? There is no positive relation between the variability in the
coefficient of variation of fishing mortality (F) and population variability
coefficient of variation (larval abundance) using a three-, five-, seven-, and
ten-year moving window. Thus variability in fishing mortality (removing
more fish some years than others) does not account for variability in fished
stocks in the CalCOFI domain.
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Figure 3 | Discriminating between hypotheses 2 and 3. A larger Dr as h is
tuned from linear (h 5 0) towards nonlinear solutions (h . 0) indicates a
stronger nonlinear signal (Dr 5 rh . 0 2 rh 5 0). a, S-map analysis shows that
fished populations (red) are significantly more nonlinear than unexploited
populations (blue) (P 5 0.0027), supporting hypothesis 3 (demographic
change), not hypothesis 2 (tracking), as the agent behind amplified
variability with fishing. b, Corroborative model results. Equation (1) was
fitted to data for unexploited species (blue line). Increased environmental
sensitivity makes time series appear more linear (dashed red line). However,
increasing growth rate r produces an enhanced nonlinear signature (solid
red line) as observed for exploited species in a.
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Rather, fishing pressure has enhanced the nonlinear behaviour of
the fished populations. Therefore, the data suggest that altered
dynamics resulting from a truncated age structure overwhelm the
propensity of young fish to track the environment passively and
that dynamic instability is the agent behind the observed increase
in variance. Increased nonlinearity has explained higher variance in
other contexts29,31.

Identifying sources of nonlinearity

We illustrate the distinction between hypotheses 2 and 3 with a
population growth model having the familiar Ricker-form29,32

Nt11 5 Ntexp[r(1 2 Nt)] 1 ce (1)

where N is population size (in units of number or biomass), r is the
intrinsic population growth rate, e is environmental variability with
unit standard deviation, and c is environmental susceptibility (see
Methods, Supplementary Fig. 4 and Supplementary Discussion).
Hypothesis 2 corresponds to an increase in environmental suscep-
tibility c; hypothesis 3 corresponds to alteration of a demographic
parameter: for this example we increase r. Forecast skill does not
improve with nonlinear tuning (h . 0) as environmental noise (ce)
is increased, but declines with h, as would be expected if the time
series were dominated by linear statistical effects (Fig. 3b, dashed line;
see Methods). We find this result is maintained whether e is ‘white’
noise, autocorrelated ‘red’ noise, 1/f ‘pink’ noise or the actual values
of the Pacific Decadal Oscillation33–35. However, under hypothesis 3
(Fig. 3b, solid red line), exploited model populations present an
enhanced nonlinear signature as r is increased.

At first glance, it seems counterintuitive that age truncation
would increase intrinsic population growth rates (because fishing
removes the largest individuals that produce the most and best qua-
lity eggs18,24–27); yet this trend is observed empirically in the California
Current ecosystem. Because individual body size decreased and total
biomass remained statistically constant (26 of 29 stocks9), the num-
ber of young fish has increased. A larger population of shorter-lived
fish requires a higher intrinsic rate of growth (r); the population must
produce more surviving offspring per capita per year to compensate
for the shortened life span. The ultimate mechanism behind this
ATE-induced increase could be competitive release and/or decreased
cannibalism or possibly evolution23,36,37, leading to increased somatic
growth or increased per-capita fecundity. Although other factors are
probably operating, the evidence from CalCOFI points to increased
growth rates as a dominant factor supporting the increase in non-
linearity observed in Fig. 3a.

Although it is well known that increasing growth rates in simple
discrete growth models can lead to unstable dynamics38, values of r
required to evoke such behaviour in single species models are often
unrealistically high. However, models with multiple species39, mul-
tiple stable states28 or models having demographic parameters that
vary in complex ways with the environment20,21 produce nonlinear
behaviour even at modest growth rates. More generally, process noise
(error from incompletely specified models) can induce instability in
otherwise stable models when the error multiplies in specific ways;
that is, when an essential detail is added that has a nonlinear effect.
Using the commonly studied29 form of process noise Zt11 5
G(Zt 1 eprocess) where equation (1) is an example of G, Fig. 4 shows
that generic process noise evokes nonlinear behaviour at lower
growth rates. This toy representation portrays nonlinear or biologi-
cally amplified process errors.

Thus, increasing either process noise or growth rates can amplify
nonlinearity. And fishing may affect both. For example, incorporat-
ing variable fishing Ft into equation (1) so that variability in F is an
expression of process noise,

Nt11 5 Ntexp[ri(1 2 Nt/Kt 2 Ft)] (2)

leads to amplified nonlinearity (Fig. 5). (However, the lack of a
relation in Fig. 2 eliminates this as a cause for increased variability
in these data.) Similarly, modelling process errors more explicitly by
adding variability directly to the demographic parameters r or K
in equation (2) will provoke a nonlinear signature, regardless of
the particular form of the noise (see Methods and Supplementary
Fig. 5). It is reasonable to speculate that the baseline nonlinearity seen
in the unexploited state is an expression of nonlinear process errors
related to variable demographic parameters, such as those tied to
ecosystem shifts and climate events for example8,9,20. So, although
neither variability in fishing nor in the environment correlates with
variability in abundance, these two sources of process error may be
implicated in complex ways with the instability that accompanies
fishing. Notwithstanding their potential destabilizing effects, by
themselves these processes have little direct effect on the overall stock
variability we observed in CalCOFI (Fig. 2, Supplementary Fig. 2, and
Supplementary Tables 2 and 3).

Life-history traits and nonlinearity

Are there characteristics that make some fish stocks more susceptible
to the nonlinear effects of fishing than others? To answer this ques-
tion we compared the nonlinearity of exploited and unexploited
stocks for various life-history traits (Table 1 and Supplementary
Table 4). Table 1 identifies a qualitative tendency for the following
characteristics to be associated with vulnerability to fishing: larger
size at sexual maturity ($25 cm), greater age at sexual maturity
($3 years), longer spawning duration (.7 months), higher fecun-
dity ($200,000 eggs per female per year), lower trophic level and
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more variability in abundance (coefficient of variation $ 0.9). Thus,
acknowledging the uncertainty arising from the small number of
species involved in some groups, one may speculate that to a first
approximation, large-maturing lower-trophic-level species that are
also fecund, may be most susceptible to further destabilization by
fishing, and regardless of life history the evidence suggests that
increasing growth rates are driving this effect.

Management implications

In summary, fishing for big individuals without consideration of the
impact on the age distribution can lead to unstable nonlinear popu-
lation dynamics, and this enhanced nonlinearity helps to explain
much of the volatility seen in fish stocks today (Fig. 1). Our study
shows that when unconstrained, an observed demographic con-
sequence of the ATE, that is, the effective increase of r, makes dra-
matic population change more likely—and paradoxically, in this
case, can make those changes slightly more predictable in the short
run. Thus target species are in double jeopardy from both fishing
removals and the ATE, as stocks with higher mortality also suffer
increasing fluctuations. Reduced size and age distributions have been
documented in many common fisheries species, for example in
Pacific salmon40, Pacific rockfish41, and North Sea ground fish42,43,
suggesting the potential relevance of the ATE for many commercially
important species. In terms of stock recovery, it can be premature
therefore to resume fishing activities solely on the basis of recovery of
biomass but before restoration of historical age distributions, even
though short-term industry pressures may make this difficult to
realize (for example, Atlantic swordfish44).

It is encouraging, however, that some managers are adopting
precautionary harvest policies that protect against stock depletion
and the ATE45,46. For example, in Alaska, where fishing is managed
through a complex system of harvest controls, there has been rela-
tively minor impact on the mean age of the population47,48.
Nonetheless, in other areas, current policies and industry pressures
that encourage lifting bans on fishing when biomass is rehabilitated,
but where maximum age is not, contain risk18,44,49. Unless fishing is
conducted with informed harvest controls and with market mechan-
isms to align incentives and manage financial risks associated with
volatile supplies, we can expect a future of instability in fish popula-
tions and suboptimal performance of the industries built on them.

METHODS SUMMARY

Hypothesis 1 was tested by examining the relation between the coefficient of

variation in fishing mortality and the coefficient of variation of spawning bio-

mass (larval indicators and fishery-based estimates) for Southern Region

California Current fisheries (Fig. 2 and Supplementary Fig. 2). Variability was

calculated for windows 3–10 years long.

Hypotheses 2 and 3 were tested with S-maps on composite CalCOFI ichthyo-

plankton time series, using methods described in detail elsewhere21,50. Briefly,

larval time series were composited end-to-end, and nonlinearity of fished versus

unfished species was assessed by computing Dr with an embedding dimension

E 5 3 (Supplementary Materials).

Hypotheses 2 and 3 are illustrated with a simple model (equation (1)) whose

behaviour is generic to a large class of fisheries models (Supplementary

Discussion). First, a baseline is established by fitting parameters to the observed

variance (Supplementary Fig. 6) and nonlinearity of unexploited CalCOFI popu-

lations (Fig. 3b, blue line). Next, to model hypothesis 2, environmental suscep-

tibility (c) is increased to simulate direct environmental tracking with the ATE

(Fig. 3b, dashed line). Alternative types of environmental noise were simulated

for hypothesis 2 (red, 1/f, white, low-pass filtered and the actual Pacific Decadal

Oscillation values33–35), and did not affect the qualitative outcome. Finally, hypo-

thesis 3 is here simulated by increasing species-specific growth rates (r) (Fig. 3b,

solid red line). Various forms of process noise were also simulated. All standard

statistical analyses were performed with R software version 2.3.0.
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