FUNGSI EKOLOGI & METODE PENILAIAN EKONOMI

Ledhyane Ika Hariyan

Fakultas Perikanan dan Ilmu Kelautan Universitas Brawijaya 2013

Tujuan Instruksional Khusus

Setelah mengikuti perkuliahan ini diharapkan mahasiswa dapat menjelaskan tentang:

- 1. Fungsi ekologis sumberdaya perikanan
- 2. Metode penilaian ekonomi
- 3. Monetary valuation
- 4. Cost-benefit analysis (CBA)

Choose the chosen choices...

Fisheries management: an economic problem

→ Sea has many uses and functions

Economic questions:

- How can we protect the fisheries environment at minimum costs?
- 2. How can we find the right balance between different interests?

Values and valuation!

What trade-offs exist with regard to the sea?

How can we analyze those trade-offs?

Can we measure the economic value of the sea?

Value of the sea

- Laut Indonesia memiliki nilai ikan sebesar 700 miliar ?
- Apakah Laut Indonesia berharga senilai 700 miliar?

Economic value of the environment

"Does it make human beings happy or unhappy?"

Direct use value

- Value derived from direct use
 - Fish from ocean
 - Wood from forest
 - A walk in the park
 - Whale watching
- Some may have a market price
- Some may not → use valuation method

Indirect use value

- Value derived from indirect use
 - Inedible fish has indirect use value if edible fish depends on it
 - Ecosystem process like nutrient cycling
- Seldom has market price
 - Insufficient information
 - Market price attached to direct use
 - needed models for quantification

Option value

- The exact value of some environmental goods maybe uncertain
 - → eg. Medicinal value of a species
- WTP (willing to pay) for species A with a certain value 100,000 rupiah?
 WTP for species B with an expected value 100,000 rupiah?

Bequest value

- → A good for the use of others
- → Use for the next generations: biodiversity, monuments

Existence value

- → A good by itself
- → Problems with existence value:
 - Everything can have existence value
 - Existence is difficult to measure
 - Can something have a value if you don't know it?

Valuing Scheme

(we don't know whether it's

Priority list: Cost Benefit Analysis

CBA "...a decision making tool to evaluate and compare project and policies by systematically:

- Identifying;
- Quantifying;
- Valuing; and
- Comparing

the positive (benefits) and negative (costs) effects".

It explicitly aims to express all effects in monetary terms

Steps in Cost Benefit Analysis

- 1. Identify alternatives
- 2. Identify incremental effects of alternatives
- 3. Quantify incremental effects
- 4. Monetize incremental effects
- 5. Discount all future effects
 - Calculate Present Value of benefits and costs
- 6. Compare discounted benefits and costs
 - Net Present Value
 - Internal Rate of Return
 - Benefit Cost Ratio

Example: Wind energy

On shore wind farm

- CO2 Neutral
- Costs
- Onshore: Effects on birds
- Offshore : Effects on benthos, birds

Offshore wind farm

Three (or four) alternatives

The alternatives

- Do nothing
- Conventional power plant
- Onshore wind farm
- Offshore wind farm

Do Nothing

Year	1	2	3	4	5
Increase in energy production	0 Peta Joule	0 PJ	0 PJ	0 PJ	0 PJ
Costs	0€	0€	0€	0€	0€
Change in bird collision	0	0	0	0	0
Change in benthos species richness	0	0	0	0	0
Change in CO2 emission	0	0	0	0	0

Conventional Power plant

Year	1	2	3	4	5
Increase in energy production	1 PJ				
Costs	300€	100€	100€	100€	100€
Change in bird collision	0	0	0	0	0
Change in benthos species richness	0	0	0	0	0
Change in CO2 emission	50	50	50	50	50

Onshore wind farm

Year	1	2	3	4	5
Increase in energy production	1 PJ				
Costs	500€	50€	50€	50€	50€
Change in bird collision	2000	2000	2000	2000	2000
Change in benthos species richness	0	0	0	0	0
Change in CO2 emission	0	0	0	0	0

Offshore wind farm

Year	1	2	3	4	5
Increase in energy production	1 PJ	1 PJ	1 PJ	1 PJ	1 PJ
Costs	1200€	200€	200€	200€	200€
Change in bird collision	4000	4000	4000	4000	4000
Change in benthos species richness	50	50	50	50	50
Change in CO2 emission	0	0	0	0	0

Steps in Cost Benefit Analysis

- 1. Identify alternatives
- 2. Identify incremental effects of alternatives
- 3. Quantify incremental effects
- 4. Monetize incremental effects
- 5. Discount all future effects
 - Calculate Present Value of benefits and costs
- 6. Compare discounted benefits and costs
 - Net Present Value
 - Internal Rate of Return
 - Benefit Cost Ratio

Monetary value of effects

Effect	Value	Possible methods
Energy production	€ 300 million per PJ	Market value of energy
Bird collision	€ 40,000 per bird	Contingent valuation survey
Number of benthic species	€ 400 million per year for the entire change	Contingent valuation survey Use value of nursery function
CO2 emissions	€ 2 per tonne	Expected damage from climate change

Calculate monetary of all incremental effects! (See excel file)

Steps in Cost Benefit Analysis

- 1. Identify alternatives
- 2. Identify incremental effects of alternatives
- 3. Quantify incremental effects
- 4. Monetize incremental effects
- 5. Discount all future effects
 - Calculate Present Value of benefits and costs
- 6. Compare discounted benefits and costs
 - Net Present Value
 - Internal Rate of Return
 - Benefit Cost Ratio

Discounting

..Calculate PVB, TPVB, PVC, TPVC of all incremental effects of the alternatives at an interest rate of 5%!

Suatu nilai Vo akan bernilai:

Vo(1+p)

 $Vo(1+p)(1+p)=Vo(1+p)^2$

 $Vo(1+p)^t \rightarrow Vt$

pada tahun depan (tahun pertama)

pada tahun ke-2

pada tahun ke-t

Maka Vo=Vt/(1+p)t

Discounted benefits in year t

Total discounted benefits in year t

Discounted costs in year t

Total discounted costs in year t

$$PVB_{t} = \frac{B_{t}}{(1+\rho)^{t}}$$

$$TPVB = \sum_{t} PVB_{t} = \sum_{t} \frac{B_{t}}{(1+\rho)^{t}}$$

$$PVC_{t} = \frac{{}^{t}C_{t}}{(1+\rho)^{t}}$$

$$TPVC = \sum_{t} PVC_{t} = \sum_{t} \frac{C_{t}}{(1+\rho)^{t}}$$

Steps in Cost Benefit Analysis

- 1. Identify alternatives
- 2. Identify incremental effects of alternatives
- 3. Quantify incremental effects
- 4. Monetize incremental effects
- 5. Discount all future effects
 - Calculate Present Value of benefits and costs
- 6. Compare discounted benefits and costs
 - Net Present Value
 - Internal Rate of Return
 - Benefit Cost Ratio

Comparing costs and benefits

- Net Present Value (NPV)
 - → Absolute differences between benefit and cost
- Benefit-cost ratio
 - → Benefit divided by cost
- Internal rate of return
 - → Interest rate at which PVB=PVC (NPV=0)

A project worthwhile if...:

- NPV > 0
- BCR > 1
- IRR > market interest rate

Notes

- 1. IRR is insensitive to interest rate
- 2. BCR depends on cost definition
- 3. Point 1 and 2 can't use for comparing projects
- NPV is the only measure to compare projects
 When positive → project is worthwhile
 Choose project which the largest NPV

Thank you...

Choose the worth choices for your generation!